Vector field statistics for objective center-of-pressure trajectory analysis during gait, with evidence of scalar sensitivity to small coordinate system rotations.
نویسندگان
چکیده
Center of pressure (COP) trajectories summarize the complex mechanical interaction between the foot and a contacted surface. Each trajectory itself is also complex, comprising hundreds of instantaneous vectors over the duration of stance phase. To simplify statistical analysis often a small number of scalars are extracted from each COP trajectory. The purpose of this paper was to demonstrate how a more objective approach to COP analysis can avoid particular sensitivities of scalar extraction analysis. A previously published dataset describing the effects of walking speed on plantar pressure (PP) distributions was re-analyzed. After spatially and temporally normalizing the data, speed effects were assessed using a vector-field paired Hotelling's T2 test. Results showed that, as walking speed increased, the COP moved increasingly posterior at heel contact, and increasingly laterally and anteriorly between ∼60 and 85% stance, in agreement with previous independent studies. Nevertheless, two extracted scalars disagreed with these results. Furthermore, sensitivity analysis found that a relatively small coordinate system rotation of 5.5° reversed the mediolateral null hypothesis rejection decision. Considering that the foot may adopt arbitrary postures in the horizontal plane, these sensitivity results suggest that non-negligible uncertainty may exist in mediolateral COP effects. As compared with COP scalar extraction, two key advantages of the vector-field approach are: (i) coordinate system independence, (ii) continuous statistical data reflecting the temporal extents of COP trajectory changes.
منابع مشابه
The trajectory of center of pressure during stance phase of gait in healthy males and females using pedar-X system
Introduction and Objectives. The trajectory of center of pressure (COP) during the stance phase of gait is considered as an important parameter in assessing of dynamic balance, foot and ankle function and effectiveness of shoe and orthotics. The aim of this study was to determine the COP trajectory during stance phase of gait in healthy males and females, by means of Pedar-X plantar pressure me...
متن کاملInvestigation of Gait Initiation in Women With Multiple Sclerosis (MS)
Background: Walking impairment is one of the most reported symptoms of Multiple Sclerosis (MS). The documentation of gait impairments is important for indexing disease progression and rehabilitation in MS. By measuring and comparing relevant parameters based on the Center of Pressure (COP) patterns, this study aimed to characterize the execution of the gait task and to identify the relationship...
متن کاملOptimal Trajectory Study of a Small Size Waverider and Wing-Body Reentry Vehicle at Suborbital Entry Speed of Approximately 4 km/s with Dynamic Pressure and Heat Rate Constraint
A numerical trajectory optimization study of two types of lifting-entry reentry vehicle has been presented at low suborbital speed of 4.113 km/s and -15 degree entry angle. These orbital speeds are typical of medium range ballistic missile with ballistic range of approximately 2000 km at optimum burnout angle of approximately 41 degree for maximum ballistic range. A lifting reentry greatly enha...
متن کاملDetection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملCasimir effects of nano objects in fluctuating scalar and electromagnetic fields: Thermodynamic investigating
Casimir entropy is an important aspect of casimir effect and at the nanoscale is visible. In this paper, we employ the path integral method to obtain a general relation for casimir entropy and internal energy of arbitrary shaped objects in the presence of two, three and four dimension scalar fields and the electromagnetic field. For this purpose, using Lagrangian and based on a perturb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gait & posture
دوره 40 1 شماره
صفحات -
تاریخ انتشار 2014